Занимательная физика.Яков Исидорович Перельман


Глава первая. ОСНОВНЫЕ ЗАКОНЫ МЕХАНИКИ

Самый дешевый способ путешествовать
 
   Остроумный французский писатель XVII века Сирано де Бержерак в своей сатирической «Истории государств на Луне» (1652 г.) рассказывает, между прочим, о таком будто бы происшедшем с ним удивительном случае. Занимаясь физическими опытами, он однажды непостижимым образом был поднят вместе со своими склянками высоко в воздух. Когда же через несколько часов ему удалось спуститься вновь на землю, то, к изумлению, очутился он уже не в родной Франции и даже не в Европе, а на материке Северной Америки, в Канаде! Свой неожиданный перелет через Атлантический океан французский писатель, однако, находит вполне естественным. Он объясняет его тем, что, пока невольный путешественник был отделен от земной поверхности, планета наша продолжала по-прежнему вращаться на восток; вот почему, когда он опустился, под ногами его вместо Франции оказался уже материк Америки.
   Казалось бы, какой дешевый и простой способ путешествовать! Стоит только подняться над Землей и продержаться в воздухе хотя бы несколько минут, чтобы Опуститься уже совершенно в другом месте, далеко К западу. Вместо того чтобы предпринимать утомительные путешествия через материки и океаны, можно неподвижно висеть над Землей и выжидать, пока она сама подставит путнику место назначения.
   К сожалению, удивительный способ этот – не более как фантазия. Во-первых, поднявшись в воздух, мы, в сущности, не отделяемся еще от земного шара: мы остаемся связанными с его газообразной оболочкой, висим в его атмосфере, которая тоже ведь участвует во вращении Земли вокруг оси. Воздух (вернее, его нижние более плотные слои) вращается вместе с Землей, увлекая с собой все, что в нем находится: облака, аэропланы, всех летящих птиц, насекомых и т. д. Если бы воздух не участвовал во вращении земного шара, то, стоя на Земле, мы постоянно чувствовали бы сильнейший ветер, по сравнению с которым самый страшный ураган казался бы нежным дуновением). Ведь совершенно безразлично: стоим ли мы на месте, а воздух движется мимо нас, или же, наоборот, воздух неподвижен, а мы перемещаемся в нем; в обоих случаях мы ощущаем одинаково сильный ветер. Мотоциклист, движущийся со скоростью 100 км в час, чувствует сильнейший встречный ветер даже в совершенно тихую погоду.
                            Рисунок 1. Можно ли с аэростата видеть, как вращается земной шар? (Масштаб в рисунке не соблюден).
   Это во-первых. Во-вторых, если бы даже мы могли подняться в высшие слои атмосферы или если бы Земля вовсе не была окружена воздухом, нам и тогда не удалось бы воспользоваться тем дешевым способом путешествовать, о котором фантазировал французский сатирик. В самом деле, отделяясь от поверхности вращающейся Земли, мы продолжаем по инерции двигаться с прежней скоростью, т. е. с тою же, с какой перемещается под нами Земля. Когда же мы снова опускаемся вниз, мы оказываемся в том самом месте, от которого раньше отделились, подобно тому как, подпрыгнув в вагоне движущегося поезда, мы опускаемся на прежнее место. Правда, мы будем двигаться по инерции прямолинейно (по касательной), а Земля под нами – по дуге; но для небольших промежутков времени это не меняет дела.
«Земля, остановись!»
   У известного английского писателя Герберта Уэллса есть фантастический рассказ о том, как некий конторщик творил чудеса. Весьма недалекий молодой человек оказался волею судьбы обладателем удивительного дара: стоило ему высказать какое-нибудь пожелание, и оно немедленно же исполнялось. Однако заманчивый дар, как оказалось, не принес ни его обладателю, ни другим людям ничего, кроме неприятностей. Для нас поучителен конец этой истории.
   После затянувшейся ночной попойки конторщик-чудодей, опасаясь явиться домой на рассвете, вздумал воспользоваться своим даром, чтобы продлить ночь. Как это сделать? Надо приказать светилам неба приостановить свой бег. Конторщик не сразу решился на такой необычайный подвиг, и когда приятель посоветовал ему остановить Луну, он, внимательно поглядев на нее, сказал в раздумье:
   «– Мне кажется, она слишком далеко для этого… Как вы полагаете?
   – Но почему же не попробовать? – настаивал Мейдиг (так звали приятеля. – Я. П.). – Она, конечно, не остановится, вы только прекратите вращение Земли. Надеюсь, это никому не повредит!
   – Гм, – сказал Фотерингей (конторщик. – Я. П.), – Хорошо, попробую. Ну…
   Он стал в повелительную позу, простер руки над миром и торжественно произнес:
   – Земля, остановись! Перестань вращаться! Не успел он договорить эти слова, как приятели уже летели в пространство со скоростью нескольких дюжин миль в минуту.
   Несмотря на это, он продолжал думать. Меньше чем в секунду он успел и подумать и высказать про себя следующее пожелание:
   – Что бы ни случилось, пусть я буду жив и невредим!
   Нельзя не признать, что желание это было высказано во-время. Еще несколько секунд, – и он упал на какую-то свежевзрытую землю, а вокруг него, не принося ему никакого вреда, неслись камни, обломки зданий, металлические предметы разного рода; летела и какая-то несчастная корова, разбившаяся при ударе о землю. Ветер дул со страшной силой; он не мог даже приподнять голову, чтобы оглянуться вокруг.
   – Непостижимо, – воскликнул он прерывающимся голосом. – Что случилось? Буря, что ли? Должно быть, я что-нибудь не так сделал.
   Осмотревшись, насколько позволял ему ветер и развевавшиеся фалды пиджака, он продолжал:
   – На небе-то, кажется, все в порядке. Вот и Луна. Ну, а все остальное… Где же город? Где дома и улицы? Откуда взялся ветер? Я не приказывал быть ветру.
   Фотерингей попробовал встать на ноги, но это оказалось совершенно невозможным, и потому он подвигался вперед на четвереньках, придерживаясь за камни и выступы почвы. Идти, впрочем, было некуда, так как, насколько можно было видеть из-под фалд пиджака, закинутых ветром на голову пресмыкающегося чудодея, все кругом представляло собою одну картину разрушения.
   – Что-то такое во вселенной серьезно испортилось, – подумал он, – а что именно – неизвестно.
   Действительно, испортилось. Ни домов, ни деревьев, ни каких-либо живых существ – ничего не было видно. Только бесформенные развалины да разнородные обломки валялись кругом, едва видные среди целого урагана пыли.
   Виновник всего этого не понимал, конечно, в чем дело. А между тем оно объяснялось очень просто. Остановив Землю сразу, Фотерингей не подумал об инерции, а между тем она при внезапной остановке кругового движения неминуемо должна была сбросить с поверхности Земли все на ней находящееся. Вот почему дома, люди, деревья, животные – вообще все, что только не было неразрывно связано с главной массой земного шара, полетело по касательной к его поверхности со скоростью пули. А затем все это вновь падало на Землю, разбиваясь вдребезги.
   Фотерингей понял, что чудо, им совершенное, не особенно удачно. А потому им овладело глубокое отвращение ко всяким чудесам, и он дал себе слово не творить их больше. Но прежде нужно было поправить беду, которую он наделал. Беда эта оказалась немалою. Буря свирепела, облака пыли закрыли Луну, и вдали слышен был шум приближающейся воды; Фотерингей видел при свете молнии целую водяную стену, со страшной скоростью подвигавшуюся к тому месту, на котором он лежал. Он стал решительным.
   – Стой! – вскричал он, обращаясь к воде. – Ни шагу далее!
   Затем повторил то же распоряжение грому, молнии и ветру.
   Все затихло. Присев на корточки, он задумался.
   – Как бы это опять не наделать какой-нибудь кутерьмы, – подумал он и затем сказал: – Во-первых, когда исполнится все, что я сейчас прикажу, пусть я потеряю способность творить чудеса и буду таким же, как обыкновенные люди. Не надо чудес. Слишком опасная игрушка. А во-вторых, пусть все будет по-старому: тот же город, те же люди, такие же дома, и я сам такой же, каким был тогда».
Письмо с самолета
   Вообразите, что вы находитесь в самолете, который быстро летит над землей. Внизу – знакомые места. Сейчас вы пролетите над домом, где живет ваш приятель. «Хорошо бы послать ему привет», – мелькает у вас в уме. Быстро пишете вы несколько слов на листке записной книжки, привязываете записку к какому-либо тяжелому предмету, который мы в дальнейшем будем называть «груз», и, выждав момент, когда дом оказывается как раз под вами, выпускаете груз из рук.
   Вы в полной уверенности, конечно, что груз упадет в саду дома. Однако он падает вовсе не туда, хотя сад и дом расположены прямо под вами!
   Следя за его падением с самолета, вы увидели бы странное явление: груз опускается вниз, но в то же время продолжает оставаться под самолетом, словно скользя по привязанной к нему невидимой нити. И когда груз достигнет земли, он будет находиться далеко впереди того места, которое вы наметили.
   Здесь проявляется тот же закон инерции, который мешает воспользоваться соблазнительным советом путешествовать по способу Бержерака. Пока груз был в самолете, он двигался вместе с машиной. Вы отпустили его. Но, отделившись от самолета и падая вниз, груз не утрачивает своей первоначальной скорости, а, падая, продолжает в то же время совершать движение в воздухе в прежнем направлении. Оба движения, отвесное и горизонтальное, складываются, и в результате груз летит вниз по кривой линии, оставаясь все время под самолетом (если, конечно, сам самолет не изменяет направления или скорости полета). Груз летит, в сущности, так же, как летит горизонтально брошенное тело, например пуля, выброшенная из горизонтально направленного ружья: тело описывает дугообразный путь, оканчивающийся в конце концов на земле.
   Заметим, что все сказанное здесь было бы совершенно верно, если бы не было сопротивления воздуха. На самом деле это сопротивление тормозит и вертикальное и горизонтальное перемещение груза, вследствие чего груз не остается все время прямо под самолетом, а несколько отстает от него.
   Уклонение от отвесной линии может быть очень значительно, если самолет летит высоко и с большой скоростью. В безветренную погоду груз, падающий с самолета, который на высоте 1000 м летит со скоростью 100 км в час, упадет метров на 400 впереди места, лежащего отвесно под самолетом (рис. 2)

.
   Расчет (если пренебречь сопротивлением воздуха) несложен. Из формулы для пути при равномерно ускоренном

 движении         время падения  можно  рассчитать по формуле        
   Значит, с высоты 1000 м камень должен падать в течение     т. е. 14 сек.
   

За это время он успеет переместиться в горизонтальном направлении на    секунд.

 

 

 

 

Бомбометание
   

После сказанного становится ясным, как трудна задача военного летчика, которому поручено сбросить бомбу на определенное место: ему приходится принимать в расчет и скорость самолета, и влияние воздуха на падающее тело и, кроме того, еще скорость ветра. На рис. 3 схематически представлены различные пути, описываемые сброшенной бомбой при тех или иных условиях. Если ветра нет, сброшенная бомба лежит по кривой АР; почему так – мы объяснили выше. При попутном ветре бомбу относит вперед и она движется. по кривой АG. При встречном ветре умеренной силы бомба падает по кривой АD, если ветер вверху и внизу одинаков;если же, как часто бывает, ветер внизу имеет направление, противоположное верхнему ветру (наверху – встречный, внизу – попутный), кривая падения изменяет свой вид и принимает форму линии А Е.

 Рисунок 3. Путь, по которому падают бомбы, сброшенные с аэроплана. АР – в безветренную погоду; АG – при попутном ветре, АD – при встречном ветре, АЕ – при ветре, встречном вверху и попутном внизу.


Безостановочная железная дорога
   Когда вы стоите на неподвижной платформе вокзала и мимо нее проносится курьерский поезд, то вскочить в вагон на ходу, конечно, мудрено. Но представьте себе, что и платформа под вами тоже движется, притом с такою же скоростью и в ту же сторону, как и поезд. Трудно ли будет вам тогда войти в вагон?
   Нисколько: вы войдете так же спокойно, как если бы вагон стоял неподвижно. Раз и вы и поезд движетесь в одну сторону с одинаковой скоростью, то по отношению к вам поезд находится в полном покое. Правда, колеса его вращаются, но вам будет казаться, что они вертятся на месте. Строго говоря, все те предметы, которые мы обычно считаем неподвижными, – например, поезд, стоящий у вокзала, – движутся вместе с нами вокруг оси земного шара и вокруг Солнца; однако практически мы можем не учитывать это движение, так как оно нам нисколько не мешает.
   Следовательно, вполне мыслимо устроить так, что-бы поезд, проходя мимо станций, принимал и высаживал пассажиров на полном ходу, не останавливаясь. Приспособления такого рода нередко устраиваются на выставках, чтобы дать публике возможность быстро и удобно осматривать их достопримечательности, раскинутые на обширном пространстве. Крайние пункты выставочной площади, словно бесконечной лентой, соединяются железной дорогой; пассажиры могут в любой момент и в любом месте входить в вагоны и выходить из них на полном ходу поезда.
   Это любопытное устройство показано на прилагаемых рисунках. На рис. 4 буквами А и В отмечены крайние станции. На каждой станции помещается круглая неподвижная площадка, окруженная большим вращающимся кольцеобразным диском. Вокруг вращающихся дисков обеих станций обходит канат, к которому прицеплены вагоны. Теперь последите, что происходит при вращении диска. Вагоны бегут вокруг дисков с такою же скоростью, с какою вращаются их внешние края; следовательно, пассажиры без малейшей опасности могут переходить с дисков в вагоны или, наоборот, покидать поезд. Выйдя из вагона, пассажир идет по вращающемуся диску к центру круга, пока не дойдет до неподвижной площадки; а перейти с внутреннего края подвижного диска на неподвижную площадку уже нетрудно, так как здесь, при малом радиусе круга, весьма мала и окружная скорость). Достигнув внутренней неподвижной площадки, пассажиру остается лишь перебраться по мостику на землю вне железной дороги (рис. 5).
   Рисунок 4. Схема устройства безостановочной железной дороги между станциями А и В. Устройство станции показано на следующем рисунке.
                                                                       Рисунок 5. Станция безостановочной железной дороги.
   Отсутствие частых остановок дает огромный выигрыш во времени и затрате энергии. В городских трамваях, например, большая часть времени и почти две трети всей энергии тратится на постепенное ускорение движения при отходе со станции и на замедление при остановках).
   На станциях железных дорог можно было бы обойтись даже без специальных подвижных платформ, чтобы принимать и высаживать пассажиров на полном ходу поезда. Вообразите, что мимо обыкновенной неподвижной станции проносится курьерский поезд; мы желаем, чтобы он, не останавливаясь, принял здесь новых пассажиров. Пусть же эти пассажиры займут пока места в другом поезде, стоящем на запасном параллельном пути, и пусть этот поезд начнет двигаться вперед, развивая ту же скорость, что и курьерский. Когда оба поезда окажутся рядом, они будут неподвижны один относительно другого: достаточно перекинуть мостки, которые соединяли бы вагоны обоих поездов, – и пассажиры вспомогательного поезда смогут спокойно перейти в курьерский. Остановки на станциях сделаются, как видите, излишними.
Движущиеся тротуары
   На принципе относительности движения основано и другое приспособление, применявшееся до сих пор только на выставках: так называемые «движущиеся тротуары». Впервые они были осуществлены на выставке в Чикаго в 1893 г., затем на Парижской Всемирной выставке в 1900 г. Вот чертеж такого устройства (рис. 6). Вы видите пять замкнутых полос-тротуаров, движущихся посредством особого механизма одна внутри другой с различной скоростью.
   Самая крайняя полоса идет довольно медленно – со скоростью всего 5 км в час; это обыкновенная скорость пешехода, и вступить на такую медленно ползущую полосу нетрудно. Рядом с ней, внутри, бежит вторая полоса, со скоростью 10 км в час. Вскочить на нее прямо с неподвижной улицы было бы опасно, но перейти на нее с первой полосы ничего не стоит. В самом деле: по отношению к этой первой полосе, ползущей со скоростью 5 км, вторая, бегущая со скоростью 10 км в час, делает всего только 5 км в час; значит, перейти с первой на вторую столь же легко, как перейти с земли на первую. Третья полоса движется уже со скоростью 15 км в час, но перейти на нее со второй полосы, конечно, нетрудно. Так же легко перейти с третьей полосы на следующую, четвертую, бегущую со скоростью 20 км/час, и, наконец, с нее на пятую, мчащуюся уже со скоростью 25 км в час. Эта пятая полоса доставляет пассажира до того пункта, который ему нужен; отсюда, последовательно переходя обратно с полосы на полосу, он высаживается на неподвижную землю.

   Рисунок 6. Движущиеся тротуары.

Трудный закон
   Ни один из трех основных законов механики не вызывает, вероятно, столько недоумений, как знаменитый «третий закон Ньютона» – закон действия и противодействия. Все его знают, умеют даже в иных случаях правильно применять, – и однако мало кто свободен от некоторых неясностей в его понимании. Может быть, читатель, вам посчастливилось сразу понять его, – но я, сознаюсь, вполне постиг его лишь десяток лет спустя после первого с ним знакомства.
   Беседуя с разными лицами, я не раз убеждался, что большинство готово признать правильность этого закона лишь с существенными оговорками. Охотно допускают, что он верен для тел неподвижных, но не понимают, как можно применять его к взаимодействию тел движущихся… Действие, – гласит закон, – всегда равно и противоположно противодействию. Это значит, что, если лошадь тянет телегу, то и телега тянет лошадь назад с такою же силою. Но ведь тогда телега должна оставаться на месте: почему же все-таки она движется? Почему эти силы не уравновешивают одна другую, если они равны?
   Таковы обычные недоумения, связанные с этим законом. Значит, закон неверен? Нет, он безусловно верен; мы только неправильно понимаем его. Силы не уравновешивают друг друга просто потому, что приложены к разным телам: одна – к телеге, другая – к лошади. Силы равны, да, – но разве одинаковые силы всегда производят одинаковые действия? Разве равные силы сообщают всем телам равные ускорения? Разве действие силы на тело не зависит от тела, от величины того «сопротивления», которое само тело оказывает силе?
   Если подумать об этом, станет ясно, почему лошадь увлекает телегу, хотя телега тянет ее обратно с такой же силой. Сила, действующая на телегу, и сила, действующая на лошадь, в каждый момент равны; но так как телега свободно перемещается на колесах, а лошадь упирается в землю, то понятно, почему телега катится в сторону лошади. Подумайте и о том, что если бы телега не оказывала противодействия движущей силе лошади, то… можно было бы обойтись и без лошади: самая слабая сила должна была бы привести телегу в движение. Лошадь затем и нужна, чтобы преодолевать противодействие телеги.
   Все это усваивалось бы лучше и порождало бы меньше недоумений, если бы закон высказывался не в обычной краткой форме: «действие равно противодействию», а, например, так: «сила противодействующая равна силе действующей». Ведь равны здесь только силы, – действия же (если понимать, как обычно понимают, под «действием силы» перемещение тела) обыкновенно различны, потому что силы приложены к разным телам.
   Точно так же, когда полярные льды сдавливали корпус «Челюскина», его борта давили на лед с равною силою. Катастрофа произошла оттого, что мощный лед оказался способным выдержать такой напор, не разрушаясь; корпус же судна, хотя и стальной, но не представляющий собою сплошного тела, поддался этой силе, был смят и раздавлен. (Подробнее о физических причинах гибели «Челюскина» рассказано далее, в отдельной статье, на стр. 44).
   Даже падение тел строго подчиняется закону противодействия. Яблоко падает на Землю оттого, что его притягивает земной шар; но точно с такой же силой и яблоко притягивает к себе всю нашу планету. Строго говоря, яблоко и Земля падают друг на друга, но скорость этого падения различна для яблока и для Земли. Равные силы взаимного притяжения сообщают яблоку ускорение 10 м/сек2, а земному шару – во столько же раз меньшее, во сколько раз масса Земли превышает массу яблока. Конечно, масса земного шара в неимоверное число раз больше массы яблока, и потому Земля получает перемещение настолько ничтожное, что практически его можно считать равным нулю. Оттого-то мы и говорим, что яблоко падает на Землю, вместо того чтобы сказать: «яблоко и Земля падают друг на друга»).
Отчего погиб Святогор-богатырь?
   Помните народную былину о Святогоре-богатыре, который вздумал поднять Землю? Архимед, если верить преданию, тоже готов был совершить такой же подвиг и требовал точки опоры для своего рычага. Но Святогор был силен и без рычага. Он искал лишь, за что ухватиться, к чему приложить богатырские руки. «Как бы я тяги нашел, так бы всю Землю поднял!» Случай представился: богатырь нашел на земле «сумочку переметную», которая «не скрянется, не сворохнется, не подымется».
 
Слезает Святогор с добра коня,
Ухватил он сумочку обема рукама,
Поднял сумочку повыше колен:
И по колена Святогор в землю угряз,
А по белу лицу не слезы, а кровь течет.
Где Святогор угряз, тут и встать не мог.
Тут и ему было кончение.
 
   Если бы Святогору был известен закон действия и противодействия, он сообразил бы, что богатырская сила его, приложенная к земле, вызовет равную, а следовательно, столь же колоссальную противодействующую силу, которая может втянуть его самого в землю.
   Во всяком случае, из былины видно, что народная наблюдательность давно подметила противодействие, оказываемое землей, когда на нее опираются. Люди бессознательно применяли закон противодействия за тысячелетия до того, как Ньютон впервые провозгласил его в своей бессмертной книге «Математические основы натуральной философии» (т. е. физики).
Можно ли двигаться без опоры?
   При ходьбе мы отталкиваемся ногами от земли или от пола; по очень гладкому полу или по льду, от которого нога не может оттолкнуться, ходить нельзя. Паровоз при движении отталкивается «ведущими» колесами от рельсов: если рельсы смазать маслом, паровоз останется на месте. Иногда даже (в гололедицу) для того, чтобы сдвинуть поезд с места, рельсы перед ведущими колесами паровоза посыпают песком из специального приспособления. Когда колеса и рельсы (на заре железных дорог) делали зубчатыми, исходили именно из того, что колеса должны отталкиваться от рельсов. Пароход отталкивается от воды лопастями бортового колеса или гребного винта. Самолет отталкивается от воздуха также при помощи винта – пропеллера. Словом, в какой бы среде ни двигался предмет, он опирается на нее при своем перемещении. Но может ли тело начать двигаться, не имея никакой опоры вне себя?
   Казалось бы, стремиться осуществить такое движение – все равно, что пытаться самого себя поднять за волосы. Как известно, такая попытка до сих пор удалась лишь барону Мюнхгаузену. Между тем, именно такое будто бы невозможное движение часто происходит на наших глазах. Правда, тело не может привести себя целиком в движение одними внутренними силами, но оно может заставить некоторую часть своего вещества двигаться в одну сторону, остальную же – в противоположную. Сколько раз видели вы летящую ракету, а задумались ли над вопросом: почему она летит? В ракете мы имеем наглядный пример как раз того рода движения, которое нас сейчас интересует.
Почему взлетает ракета?
   Даже среди людей, изучавших физику, случается нередко слышать совершенно превратное объяснение полета ракеты: она летит потому будто бы, что своими газами, образующимися при горении в ней пороха, отталкивается от воздуха. Так думали в старину (ракеты – давнее изобретение). Однако если бы пустить ракету в безвоздушном пространстве, она полетела бы не хуже, а даже лучше, чем в воздухе. Истинная причина движения ракеты совершенно иная. Очень понятно и просто изложил ее революционер-первомартовец Кибальчич в предсмертной своей записке об изобретенной им летательной машине. Объясняя устройство боевых ракет, он писал:
   «В жестяной цилиндр, закрытый с одного основания и открытый с другого, вставляется плотно цилиндр из прессованного пороха, имеющий по оси пустоту в виде канала. Горение пороха начинается с поверхности этого канала и распространяется в течение определенного промежутка времени до наружной поверхности прессованного пороха; образующиеся при горении газы производят давление во все стороны; но боковые давления газов взаимно уравновешиваются, давление же на дно жестяной оболочки пороха, не уравновешенное противоположным давлением (так как в эту сторону газы имеют свободный выход), толкает ракету вперед».
   Здесь происходит то же, что и при выстреле из пушки: снаряд летит вперед, а сама пушка отталкивается назад. Вспомните «отдачу» ружья и всякого вообще огнестрельного оружия! Если бы пушка висела в воздухе, ни на что не опираясь, она после выстрела двигалась бы назад с некоторой скоростью, которая во столько же раз меньше скорости снаряда, во сколько раз снаряд легче самой пушки. В фантастическом романе Жюля Верна «Вверх дном» американцы задумали даже воспользоваться силой отдачи исполинской пушки для выполнения грандиозной затеи – «выпрямить земную ось».
   Ракета – та же пушка, только извергает она не снаряды, а пороховые газы. По той же причине вертится и так называемое «китайское колесо», которым, вероятно, случалось вам любоваться при устройстве фейерверков: при горении пороха в трубках, прикрепленных к колесу, газы вытекают в одну сторону, сами же трубки (а с ними и колесо) получают обратное движение. В сущности, это лишь видоизменение общеизвестного физического прибора – сегнерова колеса.
   Интересно отметить, что до изобретения парохода существовал проект механического судна, основанный на том же начале; запас воды на судне предполагалось выбрасывать с помощью сильного нагнетательного насоса в кормовой части; вследствие этого корабль должен был двигаться вперед, как те плавучие жестянки, которые имеются для доказательства рассматриваемого принципа в школьных физических кабинетах. Проект этот (предложенный Ремзи) не был осуществлен, однако он сыграл известную роль в изобретении парохода, так как натолкнул Фультона на его идею.
   Рисунок 7. Самая древняя паровая машина (турбина), приписываемая Герону Александрийскому (II век до нашей эры).

   Рисунок 8. Паровой автомобиль, приписываемый Ньютону.

   Рисунок 9. Игрушечный пароходик из бумаги и яичной скорлупы. Топливом служит налитый в наперсток спирт. Пар, выбивающийся из отверстия «парового котла» (выдутое яйцо), заставляет пароходик плыть в противоположном направлении.
   Мы знаем также, что самая древняя паровая машина, изобретенная Героном Александрийским еще во II веке до нашей эры, была устроена по тому же принципу: пар из котла (рис. 7) поступал по трубке в шар, укрепленный на горизонтальной оси; вытекая затем из коленчато-изогнутых трубок, пар толкал эти трубки в обратном направлении, и шар начинал вращаться. К сожалению, геронова паровая турбина в древности оставалась только любопытной игрушкой, так как дешевизна труда рабов никого не побуждала к практическому использованию машин. Но самый принцип не заброшен техникой: в наше время он применяется при устройстве реактивных турбин.
   Ньютону – автору закона действия и противодействия – приписывают один из самых ранних проектов парового автомобиля, основанный на том же начале: пар из котла, поставленного на колеса, вырывается в одну сторону, а самый котел в силу отдачи катится в противоположную (рис. 8).
   Ракетные автомобили, об опытах с которыми в 1928 г. много писали в газетах и журналах, представляют собой современное видоизменение ньютоновой повозки.
   Для любителей мастерить приведен здесь Рисунок бумажного пароходика, также очень похожего на ньютонову повозку: в паровом котле из опорожненного яйца, нагреваемом намоченной в спирте ваткой в наперстке, образуется пар; вырываясь струёй в одну сторону, он заставляет весь пароходик двигаться в противоположную сторону. Для сооружения этой поучительной игрушки нужны, однако, очень искусные руки.
Как движется каракатица?
   Вам странно будет услышать, что есть не мало живых существ, для которых мнимое «поднятие самого себя за волосы» является обычным способом их перемещения в воде.
                                                                                 Рисунок 10. Плавательное движение каракатицы.
   Каракатица и вообще большинство головоногих моллюсков движутся в воде таким образом: забирают воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывают струю воды через упомянутую воронку; при этом они – по закону противодействия – получают обратный толчок, достаточный для того, чтобы довольно быстро плавать задней стороной тела вперед. Каракатица может, впрочем, направить трубку воронки вбок или назад и, стремительно выдавливая из нее воду, двигаться в любом направлении.
   На том же основано и движение медузы: сокращением мускулов она выталкивает из-под своего колоколообразного тела воду, получая толчок в обратном направлении. Сходным приемом пользуются при движении сальпы, личинки стрекоз и другие водные животные. А мы еще сомневались, можно ли так двигаться!
К звездам на ракете
   Что может быть заманчивее, чем покинуть земной шар и путешествовать по необъятной вселенной, перелетать с Земли на Луну, с планеты на планету? Сколько фантастических романов написано на эту тему! Кто только не увлекал нас в воображаемое путешествие по небесным светилам! Вольтер в «Микромегасе», Жюль Верн в «Путешествии на Луну» и «Гекторе Сервадаке», Уэллс в «Первых людях на Луне» и множество их подражателей совершали интереснейшие путешествия на небесные светила, – конечно, в мечтах.
   Неужели же нет возможности осуществить эту давнишнюю мечту? Неужели все остроумные проекты, с таким заманчивым правдоподобием изображенные в романах, на самом деле неисполнимы? В дальнейшем мы будем еще беседовать о фантастических проектах межпланетных путешествий; теперь же познакомимся с реальным проектом подобных перелетов, впервые предложенным нашим соотечественником К. Э. Циолковским.
   Можно ли долететь до Луны на самолете? Конечно, нет: самолеты и дирижабли движутся только потому, что опираются о воздух, отталкиваются от него, а между Землей и Луной воздуха нет. В мировом пространстве вообще нет достаточно плотной среды, на которую мог бы опереться «межпланетный дирижабль». Значит, надо придумать такой аппарат, который способен был бы двигаться и управляться, ни на что не опираясь.
   Мы знакомы уже с подобным снарядом в виде игрушки – с ракетой. Отчего бы не устроить огромную ракету, с особым помещением для людей, съестных припасов, баллонов с воздухом и всем прочим? Вообразите, что люди в ракете везут с собой большой запас горючих веществ я могут направлять истечение взрывных газов в любую сторону. Вы получите настоящий управляемый небесный корабль, на котором можно плыть в океане мирового пространства, полететь на Луну, на планеты… Пассажиры смогут, управляя взрывами, увеличивать скорость этого межпланетного дирижабля с необходимой постепенностью, чтобы возрастание скорости было для них безвредно. При желании спуститься на какую-нибудь планету они смогут, повернув свой корабль, постепенно уменьшить скорость снаряда и тем ослабить падение. Наконец, пассажиры смогут таким же способом возвратиться и на Землю.
                                                    Рисунок 11. Проект межпланетного дирижабля, устроенного наподобие ракеты.
   Вспомним, как недавно еще делала свои первые робкие завоевания авиация. А сейчас – самолеты уже высоко реют в воздухе, перелетают горы, пустыни, материки, океаны. Может быть, и «звездоплаванию» предстоит такой же пышный расцвет через два-три десятка лет? Тогда человек разорвет невидимые цепи, так долго приковывавшие его к родной планете, и ринется в безграничный простор вселенной.